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Fossil fuel emissions have been rising as rapidly as

the highest IPCC scenario proposed in 2000

SRES (2000) aver.
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Increasing emissions are increasing the rate of

Increase of the atmospheric CO, concentration
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The present
concentration is
~390 ppm, about

24% above the
value of 315 ppm
in 1957 when C.
David Keeling
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measurements
and about 40%
over the
preindustrial
concentration

Source: NOAAS

That the magnitude of the seasonal cycle has increased suggests that, even with a reduced amount of

vegetation, the higher CO, concentration is enhancing the seasonal growth of global vegetation




Increasing concentrations of radiatively active gases and

aerosols are affecting the fluxes of visible and infrared
radiation, exerting a “radiative forcing” on climate
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On a decadal-average basis, the world has experienced relatively

steadily warming over the last few decades

Global Temperature Anomalies

Annual Global (Land & Ocean) Temperature Anomaly
relative to 1901-2000 base period
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Arctic sea ice has been retreating significantly—

then came March 2010—and then May 2010
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Arctic sea ice has become younger and thinner—
Thick ice used to cover most of the central Arctic,
but now in summer is limited to a narrow band
along Greenland and the Canadian Archipelago
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The Greenland and Antarctic Ice Sheets
are both losing ice, around the edges and through
Ice streams, somewhat offset by interior thickening

= 4 ~ T e A
= -

=, '{?‘x
Greenland Ice Mass Antarctic lce Mass

2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2008 2007 2008 2009
Year Year



1900 1950 2000 2050 2100

Without policies to limit
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Projections of global average warming after 2000

for different assumptions about emissions of GHGs
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The prevailing view has been that
limiting CO, emissions Is the key to

limiting climate change in the 215t century

Carbon dioxide (CO,) 1.66 ~5.1
Methane (CH,) 0.48 ~0.9
Nitrous oxide (N,O) 0.16 ~0.4
Halocarbons 0.34 ~0.4
Tropospheric ozone (O;) 0.35 ~0.65
Black soot ~0.4 ~0.4
Sulfate direct (SO,) -0.4 -0.4
Cloud forcing -0.7 -0.7
TOTAL ~2.3 ~6.75

Sources: Current forcing from IPCC (2007); BAU Scenario from UN Sci. Experts Group (2007)



The largest change in forcing from 2000 to 2100
IS projected to result from the higher CO, level —
Contributions from other gases appear to be minor

Carbon dioxide (CO,) ~3.4 mmmm) 2.06 to0 5.15 i‘;%zofrf]';gg‘ngt
Methane (CH,) ~0.4 -0.7 to 0.59

Nitrous oxide (N,O) ~0.25 0.11to 0.40

Halocarbons ~0.05 ~0.1

Tropospheric ozone (O;) ~0.5 -0.16 to 0.89

Black soot ~0 -0.2t0 0.6

Sulfate direct (SO,) ~0 0.12to0 0.24

Cloud forcing ~0 -0.56t0 0.1

Non-CO, short-lived GHGs are estimated to be responsible for ~1.15 W/m?
--0or ~25% of positive forcing over the 215t century



Energy-related CO, emissions

- Developing countries
(Non-OECD countries)
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Fossil fuel
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for developed and
developing nations

(Washington Post, Oct. 5, 2009)

The message
conveyed to readers
was that the climate
problem is a result of
growing developing

nation emissions




Schematic of effect of Copenhagen Accord pledges
on increase in global average temperature
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Limiting the increase in global average temperature to 2° C will require sharp reductions in
emissions of CO, over the next several decades:

* For emissions peak in 2011, reduction in CO,e emissions of ~3% per year

* For emissions peak in 2015, reduction in CO,e emissions of ~“4% per year

* For emissions peak in 2020, reduction in CO,e emissions of ~5% per year

Use of the CO,e (the CO, equivalent) concentration incorporates the influences of
non-CO, greenhouse gases by scaling using their 100-year Global Warming Potentials (GWP),
thus focusing attention on centennial scale climate change




We cannot take away their hope!




Radiative forcing due to GHG emissions
from 1750 to present—

long-lived CO, increase contributes ~60%,
whereas short-lived species contribute ~30%
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The direct (clear sky) and indirect (cloud modifying)
Influences of sulfate aerosols (coming from

SO, emissions) are estimated to reduce the recent
warming influence of GHGs by about one-third

35 Direct
aerosol
3 Increased aerosol cooling
cooling, particularly from
2.5 1950'70, delayed the Indirect

intensifying GHG aerosol

2 warming influence until cooling
the early 1970s
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The climate responds to changes in all influences,

not just the change in the CO, concentration




Over the 215t century, if all emissions went to zero,

net forcing due to pre-2000 GHG emissions would drop from peak
value by ~2/3, especially because of non-CO, GHGs

Radiative Forcing (W/m?)
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Radiative Forcing (W/m?2)

Adding forcing due to 21 century CO, emissions

to 20" century legacy forcing would raise
forcing to well above the ‘dangerous level’

Copenhagen Accord’s
‘dangerous’ forcing level is
about 2.5-3.0 W/m?—
others argue it is much less

3 /

Using B2 emissions scenario,

so one with quite low emissions,
with clean technology assumption

Forcing from 215t century
CO, emissions only
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Adding CO, and CH, forcing to 20t century ‘legacy’

forcing takes GHG-only forcing even higher

7
6
5
Dangerous forcing
1 level is about 2.5-3.0

W/m?2 or lower . - ;
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3 /
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Together, the CH, and tropospheric O; forcing increments

due to 215t century emissions will be very significant,
especially over the next few decades
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Reduction in emissions of aerosol precursors is expected to

cause a small positive forcing; the cooling offset is still
projected to be -0.8 W/m? in 2100—but located differently

7 Reduction in sulfate
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small positive N,O
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0 0,
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Contribution to forcing by period of emission

(for key GHGs and allowing for removal)
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Considering species’ lifetimes also makes clear the
Important cooling role played by sulfate aerosols

Carbon dioxide (CO,) ~4

Methane (CH,) 0.9 <:| Much larger contribution n
Nitrous oxide (N,O) 0.35 <:| Much larger contribution
Halocarbons ~0.1

Tropospheric ozone (O;) ~0.65 <:| Much larger contribution
Black soot 0.4 <:| Much larger contribution
Sulfate direct (SO,) -0.4 Help to limit warming —
Cloud forcing -0.7 : Help to limit warming .
TOTAL ~5.3 —

2. Loss of the sulfate cooling offset would, in effect, augment positive
radiative forcing by about 1 W/m?—so by roughly a degree of warming.
Offsetting this is one reason that geoengineering may be needed.



Adding the effects of B2 scenario emissions from just OECD

nations to the ‘legacy forcing’ from the 20t century fills the
‘forcing space’ created by natural removal processes

Using B2 emissions scenario, so

generally the lowest emission,

7 cleanest technology assumption
SULFATE--CHG SINCE 2010
6
5 Total forcing stays near HALOCARBONS-21st
critical threshold, and CENTURY
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value for other scenarios
3

TROP O3-21st CENTURY

CH4-21st CENTURY

| Forcing from 20% century GHG emissions =, 1, 51, cEnTURY

1590 2010 2030 2050 2070 2090

Radiative Forcing (W/m?2)

0

Clearly, OECD nations must work to reduce contributions of multiple species, especially CO,



OECD-only emissions

(so no CO, or non-CO, emissions from non-OECD nations)
would still cause the Earth to warm, although more slowly
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Stopping global warming will require_the world to have lower emissions
than the OECD nations have now and as projected by the B2 emissions scenario




Also, In the absence of OECD emissions,

projected emissions from only non-OECD nations
would push forcing well above dangerous level

7
Note that over next several
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Temperature rise from non-OECD emissions only

takes temperature well above ‘dangerous threshold’
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These results point to three conclusions

1. Even if the emissions from non-OECD nations
went to zero tomorrow, the projected emissions
from the OECD nations would cause the
temperature to rise to >2° C over preindustrial.

2. Even if the emissions from OECD nations went
to zero tomorrow, the projected emissions from
the non-OECD nations would cause the
temperature to rise to >2° C over preindustrial.

3. We are all in this together and we all must act,
starting in the very near future.



What I1s needed is an effective, economical, fair, and

equitable basis for emissions reductions
that would really limit future warming

 Recognizing the different situations in:
— per capita emissions and
— economic development, and
* Recognizing the principles of:
— equity and
— differentiated responsibility,

A fair and balanced agreement would involve OECD
and non-OECD nations taking on:

— differentiated responsibilities, but
— comparable challenges



To stay below the ‘dangerous forcing’ level,

OECD nations need to demonstrate that a
modern nation can prosper with low GHG emissions

Pursue an ‘aggressive’ trajectory of
emissions reductions for all GHG species:

— CO,: 80% below 2010 values by 2050; 90% by 2100
— CH,: 60% below 2010 values by 2050; 80% by 2100

(note: in US, landfill plus fossil-fuel related emissions add
to 60%--and agricultural reductions are possible)

— N,O: 50% reduction by 2100
— VOC/CO/NOx: 50% by 2050 and 90% by 2100

— S0O,: 80% by 2050; 90% by 2100 (B2 scenario has even
faster near-term cutbacks)

— Halocarbons: B2 scenario or better—use for tradeoffs



Non-OECD nations must also reduce their emissions.
Strong early efforts on short-lived GHGs could create room

In ‘forcing space,’ reducing warming influence from
less aggressively addressing CO, emissions

Two-phase approach for non-OECD nations*:

 First, few-decade phase:
— Improve fossil fuel efficiency, without a CO, emissions cap
— Best efforts on halocarbons and N,O
— Aggressive caps on CH,, air pollutants, and black carbon
— End deforestation, move to reforestation
— Set agraduation date to second phase of reducing CO,

« Second phase that nations graduate into when per
capita CO, emissions and per capita GDP exceed a
specific limit:

— Add a cap on CO, emissions that collectively cuts projected

2040 non-OECD emissions in half by 2100, leading to roughly
equal global per capita emissions by 2100

*|dea further developed in Moore and MacCracken (2009)




The ‘Comparable Challenges’ scenario would limit peak CO,

to ~475 ppm and decrease CH, from ~1800 ppb to ~1200 ppb
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Under the Comparable Challenge scenario,

GHG radiative forcing would stay below 4 W/m?,
equivalent to CO, doubling—but reduced by aerosol cooling

Methane and
7 tropospheric ozone
forcing would be

b down significantly
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be beneficial, with
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The aerosol cooling offset is projected to lessen
as aresult of the projected reductions of SO, emissions,

especially after 2050, which would cause net forcing to
exceed the ‘dangerous’ forcing level of 2.5-3 W/m?

GHG forcing
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2 so not felt by
q climate system\

3
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T Net forcing felt by L i
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Sustaining the aerosol cooling offset at its 2010

value (perhaps intervening by geoengineering®)
would limit the net forcing peak to ~2.5-3 W/m?

GHG forcing

climate system

3 ~ offset by aerosols,
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For example by; injecting SO, into the stratosphere,
cloud brightening in the troposphere, and/or distributing SO, emissions over ocean areas;
[see, for example, Royal Society (2009) and MacCracken (2009), Environmental Research Letters]



By focusing on short-lived species as well as CO,,
the Comparable Challenge scenario considered here

would limit warming to ~2-2.5° C over preindustrial,
too high for many reasons, but appears feasible

3 Add about 0.6° Cto
estimate the change
2.5 since preindustrial

TEMP CHANGE AFTER 1990-
15 B2-MES

< TEMP CHANGE AFTER 1930-
SCENARIO

il 1
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0

Temperature change after 1990

Further emissions reductions (including perhaps additional geoengineering)
would be needed to further moderate the projected warming



Summary: Limiting global warming to 2-2.5° C

appears possible with an aggressive approach
leveraging both long- and short-lived species

The OECD (higher per capita GDP and GHG) nations:
« have demonstrated that short-lived species can be economically
controlled--and must move aggressively to do more
* must move expeditiously to show that modern societies can
prosper without emitting short- or long-lived GHGs (especially CO,)

The non-OECD (lower per capita GDP and GHG) nations:
e can demonstrate their legal commitment to taking action by
committing to a declining cap on short-lived species (most of which
must be and are being addressed to limit air and water pollution,
Increase efficiency, etc.); this could be encouraged by using the 20-
year GDP for CH,, taking strong action on black carbon, etc.
« commit to best practices for reducing emission of long-lived GHGs
In the near-term, and then graduate to the developed nation
requirements as OECD nations demonstrate that economies can
prosper with low per capita emissions.

The temperature increase could then possibly be made lower via geoengineering
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A wide range of technologies have been

demonstrated for Methane Mitigation

Source Key Technologies

Landfills Methane recovery and combustion (i.e., power
generation, industrial uses, flaring)

Coal Mines Methane recovery and combustion, flaring,
ventilation air use

Gas/Qil Use of low-bleed equipment, and better

Systems management practices

Livestock Waste Methane collection from anaerobic digestors
and combustion (power, flaring)

Ruminant Improved production efficiency through better
Livestock nutrition and management

Rice Production Water management, organic supplements
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Source: Paul Gunning, EPA, 2010



US CH, emissions are dropping, and significant

potential exists for further reductions
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As of 2005, the CH4 partnership programs have successfully reduced US
emissions 11% below 1990 levels

With continued efforts, emissions are expected to remain below 1990 level in
spite of economic growth through 2020

Source, Paul Gunning, EPA, 2010



US Black Carbon Emissions
are projected to go down

Diesel rules are expected to decrease BC emissions ~65% by 2020

CAIR primarily decreases emissions of nitrogen and sulfur oxides
Biomass burning emissions remain large source
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Speciation of PM2.5 into carbonaceous patrticles,



A range of technologies exist to significantly

reduce Black Carbon emissions

In most countries, black carbon is not being separately targeted, but
rather addressed through particulate matter (PM) control strategies

e Mobile sources

— Highway diesel rules significantly reduce BC with turn-over of the
fleet (by ~2030)

— Non-road diesel (e.g., farm and construction equipment) rules
significantly reduce BC with turn-over of the fleet (by ~2030-2040)

— Recent locomotive & marine diesel rule reduces BC (note that this
rule does not cover ocean-going vessels)

— Voluntary diesel retrofit program
* Point sources

— Federal, State and Local controls over past decades have reduced
much of the stationary source PM, including BC

— Utilities: large US coal boilers have near complete combustion &
high percent particle removal

e Biomass burning
— Fires on agricultural lands are managed in many cases

— Land clearing and construction burning are regulated in some
cases

* International opportunities:

— Address domestic fuel burning sector (e.g., cook stoves) in Asia,
Africa and Latin America
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The results presented in this study are

from the MAGICC model of
Wigley and Raper (2005, updated to 2008)

The model is an energy balance model, focused on the
treatment of the thermodynamics of the climate system.

The model, used extensively in IPCC studies, includes:
* Treatment of atmospheric radiation, that calculates the
changes in radiative forcing at the tropopause
* Treatment of the biogeochemical cycles affecting
concentrations of CO,, CH,, N,O, halocarbons, pollutant
emissions leading to tropospheric ozone, etc.
e Treatment of the ocean, including an upper ocean and
deep ocean that introduces a thermal lag
 Change in global average temperature is based on
multiplication by a sensitivity factor, calibrated to GCMs



Projections of increase in surface air temperature for the A1FI (high)

emissions scenario for CCSM3.0 (www.ccsm.ucar.edu/)
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Source: www.pnas.org/content/106/37/15555.full.pdf+html



